What can we learn about CNNs from a large scale controlled object dataset?
نویسندگان
چکیده
Tolerance to image variations (e.g. translation, scale, pose, illumination) is an important desired property of any object recognition system, be it human or machine. Moving towards increasingly bigger datasets has been trending in computer vision specially with the emergence of highly popular deep learning models. While being very useful for learning invariance to object interand intra-class shape variability, these large-scale wild datasets are not very useful for learning invariance to other parameters forcing researchers to resort to other tricks for training a model. In this work, we introduce a large-scale synthetic dataset, which is freely and publicly available, and use it to answer several fundamental questions regarding invariance and selectivity properties of convolutional neural networks. Our dataset contains two parts: a) objects shot on a turntable: 16 categories, 8 rotation angles, 11 cameras on a semicircular arch, 5 lighting conditions, 3 focus levels, variety of backgrounds (23.4 per instance) generating 1320 images per instance (over 20 million images in total), and b) scenes: in which a robot arm takes pictures of objects on a 1:160 scale scene. We study: 1) invariance and selectivity of different CNN layers, 2) knowledge transfer from one object category to another, 3) systematic or random sampling of images to build a train set, 4) domain adaptation from synthetic to natural scenes, and 5) order of knowledge delivery to CNNs. We also explore how our analyses can lead the field to develop more efficient CNNs.
منابع مشابه
RGB-D Object Recognition Using Deep Convolutional Neural Networks
We address the problem of object recognition from RGB-D images using deep convolutional neural networks (CNNs). We advocate the use of 3D CNNs to fully exploit the 3D spatial information in depth images as well as the use of pretrained 2D CNNs to learn features from RGB-D images. There exists currently no large scale dataset available comprising depth information as compared to those for RGB da...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملLearning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملAdopting New International Health Instruments – What Can We Learn From the FCTC?; Comment on “The Legal Strength of International Health Instruments - What It Brings to Global Health Governance?”
This Commentary forms a response to Nikogosian’s and Kickbusch’s forward-looking perspective about the legal strength of international health instruments. Building on their arguments, in this commentary we consider what we can learn from the Framework Convention on Tobacco Control (FCTC) for the adoption of new legal international health instruments.
متن کاملWhat Can We Learn from 21 Years of School Poisonings in New Zealand?
Background: Childhood poisoning is a significant international health concern. Very little is known about trends in exposures within schools and preschools. The objectives of this study were to investigate the data recorded by the New Zealand National Poisons Centre (NPC) on these types of exposures over a 21 year period (1989 to 2009) and to determine trends and propose strategies to reduce th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1512.01320 شماره
صفحات -
تاریخ انتشار 2015